Calculate the values of x and y, if z3=365y=x5 and 




Three mathematical statements are given to find the values of x and y in this logarithm problem.
(1) z3=365
(2) x=log6(z)23
(2) y=x5
The first statement expresses the value of z in terms of a radical having an exponential term as its radicand. The second statement is useful to find the value of x by substituting the value of z in it. Finally, the third statement is useful to find the value y by substituting the value of x in it.
Step: 1
Solve the first statement and find the value of z.
z3=365
z3=(62)5
Apply the power rule of an exponential term to simplify this expression.
z3=62×5
z3=65×2
z3=(65)2
z3=65
Take cube root both sides to find the value of z.
z33=653
z=(6)53
Step: 2
Now, substitute the value of z in the second statement to obtain the value of x.
x=log6(z)23
x=log6(6)5323
Use the power law of logarithm of an exponential term to simplify the equation.
x=53log6623
According to logarithm of base rule, the logarithm of a number to same number is one.
x=53×123
x=5323
x=523
x=33
x=1
Step: 3
Now substitute the value of x in third algebraic equation to get the value of y.
y=x5
y=(1)5
y=1
Therefore, it is derived that value of x is equal to the value of y and it is 1. It is written as 
Axact

Axact

Vestibulum bibendum felis sit amet dolor auctor molestie. In dignissim eget nibh id dapibus. Fusce et suscipit orci. Aliquam sit amet urna lorem. Duis eu imperdiet nunc, non imperdiet libero.

Post A Comment:

0 comments: