mathematics chaleng ( 2 )  - How does the length BFBF relate to the original rectangle?




Given rectangle ABCDABCD, ABAB is extended to EE such that BE=BCBE=BC. AEAE forms the diameter of a circle and CBCB is extended to FF which lies on the circle.




How does the length BF relate to the original rectangle?












solution :

Consider the following diagram.





As triangle AEF is in a semi-circle, AFE=90FAB+FEB=90
But FAB+AFB=90AFB=FEB. In the same way, BFE=FAB.
Thus the right angled triangles FAB and FEB are similar.
ABFB=FBBEABBE=(FB)2
But BE=BC, so ABBC=(FB)2
Hence the square on FB is equal to the area of the rectangle ABCD and it can be seen that this construction process has "squared" the rectangle.
Show how this method can be adapted to construct the square root of a given length AB=x.
Axact

Axact

Vestibulum bibendum felis sit amet dolor auctor molestie. In dignissim eget nibh id dapibus. Fusce et suscipit orci. Aliquam sit amet urna lorem. Duis eu imperdiet nunc, non imperdiet libero.

Post A Comment:

0 comments: